Identification of Human Gripping-force Control from Electro-encephalographic Signals by Artificial Neural Networks
نویسندگان
چکیده
The exact mechanism of information transfer between different brain regions is still not known. The theory of binding tries to explain how different aspects of perception or motor action combine in the brain to form a unitary experience. The theory presumes that there is no specific center in the brain that would gather the information from all the other brain centers, governing senses, motion, etc., and then make the decision about the action. Instead, the centers bind together, when necessary, maybe through electromagnetic (EM) waves of specific frequency. Therefore, it is reasonable to assume that the information that is transferred between the brain centers is somehow coded in the electroencephalographic (EEG) signals. The aim of this study was to explore whether it is possible to extract the information on brain activity from the EEG signals during visuomotor tracking task. In order to achieve the goal, artificial neural network (ANN) was used to predict the measured gripping-force from the EEG signal measurements and thus to show the correlation between EEG signals and motor activity. The ANN was first trained with raw EEG signals of all the measured electrodes as inputs and gripping-force as the output. However, the ANN could not be trained to perform the task successfully. If we presume that brain centers transmit and receive information through EM signals, as suggested by the binding theory, a simplified model of signal transmission in brain can be proposed. We propose a mathematical model of a human brain where the information between centers is transmitted as phase-modulated signal of certain carrier frequency. Demodulated signals were then used as the inputs for the ANN and the gripping-force signal was estimated on the output. The ANN could be trained to efficiently predict the gripping-force signal from the phase-demodulated EEG signals. Copyright c ©2005 IFAC
منابع مشابه
Application of statistical techniques and artificial neural network to estimate force from sEMG signals
This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...
متن کاملUsing Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips
There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...
متن کاملUsing Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips
There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...
متن کاملاستفاده از ترکیب الگوریتم ژنتیک و شبکه های عصبی مصنوعی برای پیش بینی نیروی گاز گرفتن از روی سیگنال الکترومایوگرام
Human mastication is a common rhythmic behavior and a complex biomechanical process which is hard to reproduce. Today, investigating the relation between electrical activity of muscles and force signals is of high importance in many applications including gait analysis, orthopedics, rehabilitation, ergonomic design, haptic technology, tele-presence surgery and human-machine interaction. Surface...
متن کاملDetecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks
Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigu...
متن کامل